Quantum correlations VIl

Wiladyslaw Adam Majewski

Instytut Fizyki Teoretycznej i Astrofizyki, UG
ul. Wita Stwosza 57, 80-952 Gdansk, Poland;

IFTiA Gdansk University — Poland



Quantum correlations VIII.

e In Quantum Computing, a characterization of states with positive partial
transposition (PPT states) is of paramount importance.

e Namely, in the fifth lecture, we have seen
6sep C 6PPT C 67 (1)

and the family of PPT (transposable) states on B(H)® B(K) is defined
as

GPPT:{QOEG:QOO(idB(H)(X)TK)66} (2)
where, as before, 7 stands for the transposition map, now defined on
B(KC).
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Quantum correlations VIII.

Thus, states in G ppr contain non-classical correlations.

However, it is believed that genuine quantum correlations are contained
in states from &\ Gppr.

This makes clear our motivation in description of PPT states.

Observe that to define this family of states, we have used properties of
positive maps.

On the other hand, in early days of attempts to classify the structure of
positive maps, Choi observed, in 1982, that the transposition is playing
a distinguished role in describing tensor product of matrices which are
positive.

We remind that the theory of positive maps is not complete, although
hard work done in last decades.
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However, Choi noted that the theory (of positive maps) is easy for
dimension 2 but very non-trivial for higher dimensions. In particular, he
observed the transposition is playing an important role.

The significance of transposition was considered in Physics by Peres and
Horodecki's, in 1996, and their research led to the first classification of
quantum states in Quantum Information.

Then, further investigations have shown the importance of PPT states
for quantum computing.

Here, we wish to present a characterization of PPT states for quantum
systems. To this end we will exploit links between tensor products and
properly chosen mapping spaces.

This should be expected as for the definition of PPT states the theory
of positive mappings was used.
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e On the other hand, this theory is related to tensor products, and finally,
the Grothendieck approach to tensor products is emerging from rules of
quantization (Born rule!), as it was described in the fourth lecture.

e |n particular, we have seen:
L(A2A) = (A R, A",

where L(2(,2() stands for the set of all bounded linear maps from 2l to
2, and
B(A,A) = LA 2A)

where 2B (2(, 2(,) denotes the space of bounded bilinear forms on 2 x 2.

Here, 2 stands for the specific algebra generated by observables while
20, denotes its predual.
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e Let us specify the above results for 2l = B(H). Obviously, then 2, is
the set of all trace class operators on the Hilbert space H.

e Thus, we will be concerned with Dirac's formalism of Quantum
Mechanics.

e We begin with the following result:
o This result s originated from the Grothendieck theory of tensor

products of Banach spaces. However the form given below s taken
from Stgrmer.
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e Proposition 1. There is an isometric isomorphism o — @ between
L(B(K),B(H)) and (B(K) ®, Fr(H))* such that

@(Z A; ® B;) = Z Tr(p(A;)BY) (3)

where B! = 7(B;) (7 stands for the transposition), Fr(H) denotes the
trace class operators on H, and Z,fil A; ® B; € B(K) @ Fr(H).

Furthermore ¢ € L(B(K),B(H))* if and only if ¢ is positive on
B(K)" @, Fr(H)", where L(B(K),B(H))" denotes those linear
bounded maps which are positive, i.e p(A*A) >0 for A € B(K).
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e \We emphasize that, here and in the reminder of this section, both Hilbert
spaces H and K are, in general, infinite dimensional.

e As PPT states are “dual” to decomposable maps we need an adaptation
of the above Proposition for CP and co-CP maps.

e It can be shown, using the identification of B(H) with Fr(H), the the
above modification can be carried out:
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e Theorem 2. (1) Let L(B(H),B(K).) stands for the set of all linear
bounded, normal (x-weak continuous) maps from B(H) into B(K)..
There is an isomorphism 1 — 1) between L(B(H),B(K).) and
(B(H) ® B(K))+ given by

(Y A4 B = Y Tr(w(A)BY) @

The isomorphism is isometric if ¥ is considered on B(H) ®~ B(K).

Furthermore, 1) is positive on (B(H) @ B(K))" if and only if ¢ is
completely positive.
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(2) There is an isomorphism ¢ — 1) between L (B (), B(K).) and
(B(H) ® B(K)), given by

b (ZAi@)Bi) = ZT?“idb (A:) Bi, a; € B(H), bi€ B(K). (5)

This isomorphism is isometric if 1) is considered on B(H)®.B(K).

Furthermore 1) is positive on (B(H)®B(K))™ if and only if 1 is complete
co-positive.

e To clarify the theorem we make:
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Remark 3. Since the projective norm || - || is submultiplicative, the
involution * is isometric for this norm it follows that B(H)®,B(K) is a
*-Banach algebra.

Consequently, the concept of positivity is well defined in B(H)®,B(K).

Therefore, in above Theorem, one can combine isometricity with
positivity of functionals.

IFTiA Gdansk University — Poland 10



Quantum correlations VIII.

e This result is the “starting point” in the study of so called entanglement
mappings.

e Following Belavkin-Ohya scheme, let us take an arbitrary normal state w
on B(H) ® B(K).

e We fix a density matrix p,, describing the composite state w:
w(-) = Tr(po).

e Having the density matrix p,, we will exploit its spectral decomposition.

e Namely:
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e Let the spectral decomposition of p,, be

N
po =) Ailei) (eil
=1

where {e;} is an orthogonal system in H ® K.

o Defneamap T : K - H®K

by
Ten =€ @1

e So it is an embedding (inclusion map).
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e Then, following Belavkin-Ohya scheme, we define the entanglement
operator H : ' H - HRIK QK

by
1
Hn = Z )\22 (J’H(X)IC X T‘}kﬂn) €; &) €; (8)

where e; € H® K for each ¢, and Jygic is a complex conjugation defined

by
VTEYS (Z(éfé,f)éz) = (€, f)éi (9)

) )

where {¢€;} is the extension (if necessary) of the orthonormal system {e;}
to the complete orthogonal normal system {¢;} in HR K. {e;} are taken
from the spectral decomposition of p,,.

e J4 is defined analogously using the spectral resolution of H*H.
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e The definition of the entanglement operator H is a necessary step to
define the entanglement mapping:

¢»:B(K)— B(H).

given by

$(B) = (H*(1® B)H)" = JyH*(1 ® B)*"H J4. (10)
where B € B(K).

e Properties of the entanglement mapping

¢ as well as its dual ¢* are contained in the next proposition.
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Proposition 4. 1. The dual of the entanglement mapping ¢* : B(H) —
B(K)« has the following form

¢*(A) = TryexHA'H*, A€ B(H).
2. A state w on B(H ® K) can be written as

W(A® B) = TryyAp(B) = Trxe Bo*(A). (11)

e We recall, the definition of PPT states is saying that any such state
composed with the partial transposition is again a state.

e This fact combined with the above proposition leads to:
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e Theorem 5. PPT states are completely characterized by the mapping
®* which is both CP and co-CP.

e Taking an arbitrary fixed normal state w, one has its density matrix p,,.
e This density matrix gives rise to the entanglement mapping ¢.

e Then, Theorem 5 says that positivity properties of the entanglement
mapping ¢ encodes PPT characterization of the given state w.

e CONCLUSIONS:

e In the given lectures, we presented a concise scheme for quantization
and analysis of one of the fundamental concepts of probability calculus
— the idea of correlations.

IFTiA Gdansk University — Poland 16



Quantum correlations VIII.

e Although, the quantization of coefficient of correlation is straightforward,
the non-commutative setting offers new phenomenon.

e We have observed that a state (which can be understood as a
non-commutative integral) does not possess the weak*- Riemann
approximation property.

e This implies new type correlations, which are called quantum correlations.

e o study this new type correlations we have used the decomposition
theory as well as the selected results from the tensor product theory of
metric spaces.

e The utility of decomposition theory stems from the well known fact that
the set of states in quantum mechanics does not form a simplex.
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e Deep Grothendieck's results were necessary to provide the definition of
separable (entangled) density matrices and to study the important class
of states — PPT states.

e In particular, note that the proper geometry for the collection of
density matrices, for which people were looking for many years, 1is
that given by the projective norm.
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