

Quantum correlations VIII

Wladyslaw Adam Majewski

Instytut Fizyki Teoretycznej i Astrofizyki, UG
ul. Wita Stwosza 57, 80-952 Gdańsk, Poland;

IFTiA Gdańsk University – Poland

- PPT states:
- In **Quantum Computing**, a characterization of states with positive partial transposition (PPT states) is of paramount importance.
- Namely, in the fifth lecture, we have seen

$$\mathfrak{S}_{sep} \subset \mathfrak{S}_{PPT} \subset \mathfrak{S}, \quad (1)$$

and the family of *PPT* (transposable) states on $B(\mathcal{H}) \otimes B(\mathcal{K})$ is defined as

$$\mathfrak{S}_{PPT} = \{\varphi \in \mathfrak{S} : \varphi \circ (id_{B(\mathcal{H})} \otimes \tau_{\mathcal{K}}) \in \mathfrak{S}\} \quad (2)$$

where, as before, $\tau_{\mathcal{K}}$ stands for the transposition map, now defined on $B(\mathcal{K})$.

- Thus, states in \mathfrak{S}_{PPT} contain non-classical correlations.
- However, it is believed that genuine quantum correlations are contained in states from $\mathfrak{S} \setminus \mathfrak{S}_{PPT}$.
- This makes clear our motivation in description of PPT states.
- Observe that to define this family of states, we have used properties of positive maps.
- On the other hand, in early days of attempts to classify the structure of positive maps, Choi observed, in 1982, that the transposition is playing a distinguished role in describing tensor product of matrices which are positive.
- We remind that the theory of positive maps is not complete, although hard work done in last decades.

- However, Choi noted that the theory (*of positive maps*) is easy for dimension 2 but **very non-trivial** for higher dimensions. In particular, he observed the transposition is playing an important role.
- The significance of transposition was considered in Physics by Peres and Horodecki's, [in 1996](#), and their research led to the first classification of quantum states in Quantum Information.
- Then, further investigations have shown the importance of PPT states for quantum computing.
- Here, we wish to present a characterization of PPT states for quantum systems. To this end we will exploit links between tensor products and properly chosen mapping spaces.
- This should be expected as for the definition of PPT states the theory of positive mappings was used.

- On the other hand, this theory is related to tensor products, and finally, the Grothendieck approach to tensor products is emerging from rules of quantization ([Born rule!](#)), as it was described in the fourth lecture.
- In particular, we have seen:

$$L(\mathfrak{A}, \mathfrak{A}) \cong (\mathfrak{A} \otimes_{\pi} \mathfrak{A}_*)^*,$$

where $L(\mathfrak{A}, \mathfrak{A})$ stands for the set of all bounded linear maps from \mathfrak{A} to \mathfrak{A} , and

$$\mathfrak{B}(\mathfrak{A}, \mathfrak{A}_*) \cong L(\mathfrak{A}, \mathfrak{A})$$

where $\mathfrak{B}(\mathfrak{A}, \mathfrak{A}_*)$ denotes the space of bounded bilinear forms on $\mathfrak{A} \times \mathfrak{A}_*$.

Here, \mathfrak{A} stands for the specific algebra generated by observables while \mathfrak{A}_* denotes its predual.

- Let us specify the above results for $\mathfrak{A} \equiv B(\mathcal{H})$. Obviously, then \mathfrak{A}_* is the set of all trace class operators on the Hilbert space \mathcal{H} .
- Thus, we will be concerned with Dirac's formalism of Quantum Mechanics.
- We begin with the following result:
- *This result is originated from the Grothendieck theory of tensor products of Banach spaces. However the form given below is taken from Størmer.*

- **Proposition 1.** *There is an isometric isomorphism $\varphi \rightarrow \hat{\varphi}$ between $L(B(\mathcal{K}), B(\mathcal{H}))$ and $(B(\mathcal{K}) \otimes_{\pi} \mathcal{F}_T(\mathcal{H}))^*$ such that*

$$\hat{\varphi}\left(\sum_{i=1}^N A_i \otimes B_i\right) = \sum_{i=1}^N \text{Tr}(\varphi(A_i) B_i^t) \quad (3)$$

where $B_i^t = \tau(B_i)$ (τ stands for the transposition), $\mathcal{F}_T(\mathcal{H})$ denotes the trace class operators on \mathcal{H} , and $\sum_{i=1}^N A_i \otimes B_i \in B(\mathcal{K}) \otimes \mathcal{F}_T(\mathcal{H})$.

Furthermore $\varphi \in L(B(\mathcal{K}), B(\mathcal{H}))^+$ if and only if $\hat{\varphi}$ is positive on $B(\mathcal{K})^+ \otimes_{\pi} \mathcal{F}_T(\mathcal{H})^+$, where $L(B(\mathcal{K}), B(\mathcal{H}))^+$ denotes those linear bounded maps which are positive, i.e $\varphi(A^*A) \geq 0$ for $A \in B(\mathcal{K})$.

- We emphasize that, here and in the remainder of this section, both Hilbert spaces \mathcal{H} and \mathcal{K} are, in general, *infinite dimensional*.
- As PPT states are “dual” to decomposable maps we need an adaptation of the above Proposition for CP and co-CP maps.
- It can be shown, using the identification of $B(\mathcal{H})$ with $\mathcal{F}_T(\mathcal{H})$, the the above modification can be carried out:

- **Theorem 2.** (1) Let $L(B(\mathcal{H}), B(\mathcal{K})_*)$ stands for the set of all linear bounded, normal (*-weak continuous) maps from $B(\mathcal{H})$ into $B(\mathcal{K})_*$. There is an isomorphism $\psi \longmapsto \hat{\psi}$ between $L(B(\mathcal{H}), B(\mathcal{K})_*)$ and $(B(\mathcal{H}) \otimes B(\mathcal{K}))_*$ given by

$$\hat{\psi}\left(\sum_{i=1}^N A_i \otimes B_i\right) = \sum_{i=1}^N \text{Tr}(\psi(A_i) B_i^t) \quad (4)$$

The isomorphism is isometric if $\hat{\psi}$ is considered on $B(\mathcal{H}) \otimes_{\pi} B(\mathcal{K})$.

Furthermore, $\hat{\psi}$ is positive on $(B(\mathcal{H}) \otimes B(\mathcal{K}))^+$ if and only if ψ is completely positive.

(2) *There is an isomorphism $\psi \longmapsto \hat{\psi}$ between $L(B(\mathcal{H}), B(\mathcal{K})_*)$ and $(B(\mathcal{H}) \otimes B(\mathcal{K}))_*$ given by*

$$\hat{\psi} \left(\sum_i A_i \otimes B_i \right) = \sum_i \text{Tr}_{\mathcal{K}} \psi(A_i) B_i, \quad a_i \in B(\mathcal{H}), \quad b_i \in B(\mathcal{K}). \quad (5)$$

This isomorphism is isometric if $\hat{\psi}$ is considered on $B(\mathcal{H}) \otimes_{\pi} B(\mathcal{K})$.

Furthermore $\hat{\psi}$ is positive on $(B(\mathcal{H}) \otimes B(\mathcal{K}))^+$ if and only if ψ is complete co-positive.

- To clarify the theorem we make:

Remark 3. *Since the projective norm $\|\cdot\|_\pi$ is submultiplicative, the involution $*$ is isometric for this norm it follows that $B(H) \otimes_\pi B(K)$ is a $*$ -Banach algebra.*

Consequently, the concept of positivity is well defined in $B(H) \otimes_\pi B(K)$.

Therefore, in above Theorem, one can combine isometricity with positivity of functionals.

- This result is the “starting point” in the study of so called **entanglement mappings**.
- Following Belavkin-Ohya scheme, let us take an arbitrary normal state ω on $B(\mathcal{H}) \otimes B(\mathcal{K})$.
- We fix a density matrix ρ_ω describing the composite state ω :

$$\omega(\cdot) \equiv \text{Tr}(\rho_\omega \cdot).$$

- Having the density matrix ρ_ω we will exploit its spectral decomposition.
- Namely:

- Let the spectral decomposition of ρ_ω be

$$\rho_\omega = \sum_{i=1}^N \lambda_i |e_i\rangle\langle e_i| \quad (6)$$

where $\{e_i\}$ is an orthogonal system in $\mathcal{H} \otimes \mathcal{K}$.

- Define a map $T_\xi : \mathcal{K} \rightarrow \mathcal{H} \otimes \mathcal{K}$

by

$$T_\xi \eta = \xi \otimes \eta \quad (7)$$

- So it is an *embedding (inclusion map)*.

- Then, following *Belavkin-Ohya scheme*, we define the entanglement operator $H : \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{K} \otimes \mathcal{K}$

by

$$H\eta = \sum_i \lambda_i^{\frac{1}{2}} \left(J_{\mathcal{H} \otimes \mathcal{K}} \otimes T_{J_{\mathcal{H}\eta}}^* \right) e_i \otimes e_i \quad (8)$$

where $e_i \in \mathcal{H} \otimes \mathcal{K}$ for each i , and $J_{\mathcal{H} \otimes \mathcal{K}}$ is a complex conjugation defined by

$$J_{\mathcal{H} \otimes \mathcal{K}} \left(\sum_i (\dot{e}_i, f) \dot{e}_i \right) = \sum_i \overline{(\dot{e}_i, f)} \dot{e}_i \quad (9)$$

where $\{\dot{e}_i\}$ is the extension (if necessary) of the orthonormal system $\{e_i\}$ to the complete orthogonal normal system $\{\dot{e}_i\}$ in $\mathcal{H} \otimes \mathcal{K}$. $\{e_i\}$ are taken from the spectral decomposition of ρ_ω .

- $J_{\mathcal{H}}$ is defined analogously using the spectral resolution of H^*H .

- The definition of the entanglement operator H is a necessary step to define the entanglement mapping:

$$\phi : B(\mathcal{K}) \rightarrow B(\mathcal{H})_*$$

given by

$$\phi(B) = (H^*(\mathbb{1} \otimes B)H)^t = J_{\mathcal{H}} H^*(\mathbb{1} \otimes B)^* H J_{\mathcal{H}}. \quad (10)$$

where $B \in B(\mathcal{K})$.

- Properties of the entanglement mapping

ϕ as well as its dual ϕ^* are contained in the next proposition.

Proposition 4. 1. *The dual of the entanglement mapping $\phi^* : B(\mathcal{H}) \rightarrow B(\mathcal{K})_*$ has the following form*

$$\phi^*(A) = \text{Tr}_{\mathcal{H} \otimes \mathcal{K}} H A^t H^*, \quad A \in B(\mathcal{H}).$$

2. *A state ω on $B(\mathcal{H} \otimes \mathcal{K})$ can be written as*

$$\omega(A \otimes B) = \text{Tr}_{\mathcal{H}} A \phi(B) = \text{Tr}_{\mathcal{K}} B \phi^*(A). \quad (11)$$

- We recall, the definition of PPT states is saying that any such state composed with the partial transposition is again a state.
- This fact combined with the above proposition leads to:

- **Theorem 5.** *PPT states are completely characterized by the mapping ϕ^* which is both CP and co-CP.*
- Taking an arbitrary fixed normal state ω , one has its density matrix ρ_ω .
- This density matrix gives rise to the entanglement mapping ϕ .
- Then, Theorem 5 says that positivity properties of the entanglement mapping ϕ encodes PPT characterization of the given state ω .
- CONCLUSIONS:
 - In the given lectures, we presented a concise scheme for quantization and analysis of one of the fundamental concepts of probability calculus – **the idea of correlations**.

- Although, the quantization of coefficient of correlation is straightforward, the non-commutative setting offers new phenomenon.
- We have observed that a state (which can be understood as a non-commutative integral) does not possess the weak*- Riemann approximation property.
- This implies new type correlations, which are called **quantum correlations**.
- To study this new type correlations we have used the decomposition theory as well as the selected results from the tensor product theory of metric spaces.
- The utility of decomposition theory stems from the well known fact that the set of states in quantum mechanics does not form a simplex.

- Deep Grothendieck's results were necessary to provide the definition of separable (entangled) density matrices and to study the important class of states – PPT states.
- *In particular, note that the proper geometry for the collection of density matrices, for which people were looking for many years, is that given by the projective norm.*